Symmetries of Tensor Products

S. Friedland*
Institute of Mathematics
Hebrew University
Jerusalem, Israel
and
J. W. Robbin
Department of Mathematics
University of Wisconsin
Madison, Wisconsin 53706

Submitted by Hans Schneider

Abstract

We give sufficient conditions for the description of the isometry group of a tensor product in terms of the isometry groups of the factors. A slightly more general theory involving tensor products and saturated linear groups is developed for this purpose.

0. INTRODUCTION

Let U and V be vector spaces, and endow the tensor product

$$
W=U \otimes V
$$

with the canonical norm (see Section 7 below). Then any linear automorphism c of W of form

$$
\begin{equation*}
c=a \otimes b \tag{1}
\end{equation*}
$$

where a and b are isometries of U and V respectively, is an isometry of W. Moreover, if U and V are isometrically isomorphic, then any automorphism c

[^0]of form
\[

$$
\begin{equation*}
c(x \otimes y)=(a y) \otimes(b x) \tag{2}
\end{equation*}
$$

\]

where $a: V \rightarrow U$ and $b: U \rightarrow V$ are isometries, is also an isometry of W.
There are examples (see Section 4 below) which show that these need not be the only examples. Theorem 8.7 below says that every isometry of W has one of the forms (1) or (2) in case the dual norms on U^{*} and V^{*} are smooth, and Theorem 8.6 below gives a sufficient condition that every c in the identity component of the group of isometries of W have the fomm (1).

These theorems are derived from a slightly more general theory (developed in Sections 2-5) concerning tensor products and "saturated" linear groups, i.e. groups which are the (setwise) stabilizer of some set. The reason that these groups arise naturally in this context is the theorem of Robbin [7] (see also [4]) that a linear group is the isometry group of some norm iff it is compact, is saturated, and contains all unit norm scalar matrices.

We now list briefly the content of the paper. In Section 1 we introduce basic notations and concepts which are used in the sequel. In Section 2 we define the wreath tensor product of groups, which is naturally associated with the groups $G_{i j}$-the subgroup of linear isomorphisms from the space W_{i} to W_{i} which preserve a given structure. We then state our "guiding principle" for the wreath tensor product. The well-known results of Marcus and Moyls [5] and others is one of the cases where our principle applies. Section 3 deals with stable groups $\mathrm{GL}(V, Y)$ which consist of all linear isomorphisms $a: V \rightarrow V$ such that $a Y=Y$. This concept is a natural generalization of the concept of the saturation. Theorems 3.1-3.3 describe three distinct situations where the "guiding principle" applies. The proof of these theorems is given in Section 5. Section 4 is devoted to simple examples to illustrate Theorems 3.1-3.3 and to show that some conditions in these theorems cannot be dropped. In Section 6 we introduce more notation related to the normed spaces which is needed in the next section. Section 7 is devoted to the discussion of the canonical norms on the tensor product of normed spaces.

In Section 8 we give our main results. Theorem 8.6 essentially claims that the identity component of $W=U \otimes V$ has the form (1). Theorem 8.7 says that every isometry of W is of the form (1) if the norms on U and V (or on U^{*} and V^{*}) are smooth. The last section is devoted to remarks and conjectures.

1. SOME NOTATION

Throughout, \mathbb{F} will denote either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. All vector spaces will be finite dimensional over \mathbb{F}.

For vector spaces $U, V, W_{1}, \ldots, W_{n}$ denote by $L^{n}\left(W_{1}, \ldots, W_{n} ; V\right)$ the space of all multilinear maps from $W_{1} \times \cdots \times W_{n}$ to V; by $L(U, V)$ the space of linear maps from U to V; by $L_{\text {iso }}(U, V)$ the (possibly empty) set of all linear isomorphisms from U to V; by $\mathrm{GL}(V)$ the general linear group of V; and by $g l(V)$ the Lie algebra of $G L(V)$. Thus:

$$
\begin{aligned}
L(U, V) & =L^{1}(U, V) \\
V^{*} & =L(V, \mathbb{F}) \\
\mathrm{GL}(V) & =L_{\mathrm{iso}}(V, V) \\
\operatorname{gl}(V) & =L(V, V)
\end{aligned}
$$

We shall denote by W the tensor product

$$
W=W_{1} \otimes \cdots \otimes W_{n},
$$

by $\mu \in L^{n}\left(W_{1}, \ldots, W_{n} ; W\right)$ the canonical map

$$
\mu\left(x_{1}, \ldots, x_{n}\right)=x_{1} \otimes \cdots \otimes x_{n},
$$

and by M the image of μ :

$$
M=\left\{x_{1} \otimes \cdots \otimes x_{n}: x_{i} \in W_{i}\right\} .
$$

Elements of M are called decomposable (or rank one by some authors).
For every vector space V the map μ induces a vector-space isomorphism:

$$
\begin{align*}
\mu^{*}: L(W, V) & \rightarrow L^{n}\left(W_{1}, \ldots, W_{n} ; V\right), \tag{1.1}\\
\left(\mu^{*} A\right)\left(x_{1}, \ldots, x_{n}\right) & =A\left(x_{1} \otimes \ldots \otimes x_{n}\right) .
\end{align*}
$$

This fact is called the "universal mapping property" and characterizes uniquely the tensor product W (or rather the map μ.)

By elimination theory (see e.g. [8, p. 104]) M is an algebraic variety. This can be seen directly as follows:

Proposition 1.2. A point $w \in W$ lies in M iff it satisfies all the quadratic equations

$$
\langle\xi, w\rangle\langle\eta, w\rangle=\left\langle\xi^{\prime}, w\right\rangle\left\langle\eta^{\prime}, w\right\rangle,
$$

where $\xi, \eta, \xi^{\prime}, \eta^{\prime} \in W^{*}$ range over all quadruples of form

$$
\begin{array}{ll}
\xi=\xi_{1} \otimes \cdots \otimes \xi_{n}, & \xi^{\prime}=\xi_{1}^{\prime} \otimes \cdots \otimes \xi_{n}^{\prime} \\
\eta=\eta_{1} \otimes \cdots \otimes \eta_{n}, & \eta^{\prime}=\eta_{1}^{\prime} \otimes \cdots \otimes \eta_{n}^{\prime}
\end{array}
$$

where $\xi_{i}, \eta_{i} \in W_{i}^{*}$ and $\left\{\xi_{i}, \eta_{i}\right\}=\left\{\xi_{i}^{\prime}, \eta_{i}^{\prime}\right\}$ for $j=1, \ldots, n$ (here $\{\xi, \eta\}$ is the set consisting of the elements ξ and η).

2. THE WREATH TENSOR PRODUCT

Imagine that each of the spaces W_{j} has some structure, and denote by $G_{i j}$ the set of linear isomorphisms from W_{i} to W_{i} which preserve that structure. (We allow $G_{i i}$ to be empty for $i \neq j$.) More specifically, assume given

$$
G_{i j} \subset L_{\mathrm{iso}}\left(W_{i}, W_{i}\right)
$$

satisfying the following axioms:

$$
\begin{array}{lll}
a \in G_{i i}, \quad b \in G_{i k} & \Rightarrow & b a \in G_{i k} ; \\
a \in G_{i j} & \Rightarrow & a^{-1} \in G_{i i} ; \\
e \in G_{i i} & & \tag{2.3}
\end{array}
$$

(where e denotes the identity map). Note that in particular

$$
G_{i i} \subset \mathrm{GL}\left(W_{i}\right)
$$

is a subgroup.
Given such a system, we define a new group

$$
G \subset G L(W)
$$

called the wreath tensor product; it consists of all transformations $a \in \mathrm{GL}(W)$ of the form

$$
\begin{equation*}
a\left(x_{1} \otimes \cdots \otimes x_{n}\right)=a_{1} x_{\sigma(1)} \otimes \cdots \otimes a_{n} x_{\sigma(n)} \tag{2.4}
\end{equation*}
$$

for $x_{i} \in W_{i}$, where σ is a permutation of $\{1, \ldots, n\}$ and $a_{j} \in G_{\sigma(i) i}$. The idea of this definition is the following

Guiding Principle 2.5. Whenever a structure is defined in W from the given structures in W_{1}, \ldots, W_{n}, the group G should be a subgroup of the automorphism group of that structure.

We denote by G_{0} the subgroup of G consisting of those a given by (2.4) for which σ is the identity permutation. Note the natural surjective homomorphism

$$
\begin{align*}
& G_{11} \times \cdots \times G_{n n} \rightarrow G_{0} \tag{2.6}\\
& \quad\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} \otimes \cdots \otimes a_{n} .
\end{align*}
$$

The kernel of the homomorphism (2.6) consists of n-tuples of scalars whose product is the identity. The group G_{0} is a normal subgroup of G of finite index; the quotient group consists of all permutations σ for which $G_{\sigma(j) i} \neq \varnothing$ for $j=1, \ldots, n$.

We shall denote the Lie algebra of $G_{i j}$ by G_{i} and the common Lie algebra of G and G_{0} by

$$
\mathcal{G}=\{A \in \operatorname{gl}(W): \exp (t A) \in G \forall t \in \mathbb{R}\}
$$

The homomorphism of Lie algebras

$$
\mathcal{G}_{1} \times \cdots \times \mathcal{G}_{n} \rightarrow \mathcal{G}
$$

induced by (2.6) is an isomorphism when each \mathcal{G}_{j} consists of matrices of trace zero.

The following well-known theorem (see [5], [6], and [9]) illustrates the kind of result we want to prove.

Theorem 2.7. Suppose

$$
G_{i j}=L_{\text {iso }}\left(W_{i}, W_{i}\right)
$$

Then

$$
G=\mathrm{GL}(W, M),
$$

where $M \subset W$ is the manifold of decomposable elements and $\mathrm{GL}(W, M)$ is by
definition the group of "decomposable preservers":

$$
\mathrm{GL}(W, M)=\{a \in \mathrm{GL}(W): a(M)=M\}
$$

Note that M is "ruled": through each point $x=x_{1} \otimes \ldots \otimes x_{n}$ there pass n linear subspaces:

$$
R_{i}(x)-x_{1} \otimes \cdots \otimes x_{i-1} \otimes W_{i} \otimes x_{i+1} \otimes \cdots \otimes x_{n}
$$

Moreover for each $j=1, \ldots, n$ we have

$$
\begin{gathered}
M=\bigcup_{x} R_{j}(x) \\
R_{i}(x) \cap R_{i}\left(x^{\prime}\right) \neq\{0\} \quad \Leftrightarrow \quad R_{i}(x)=R_{i}\left(x^{\prime}\right)
\end{gathered}
$$

and for $i \neq j$

$$
R_{i}(x) \cap R_{i}(x)=\mathbb{F} x
$$

Any element $a \in \mathrm{GL}(W, M)$ preserves this ruled structure in the sense that

$$
a R_{\sigma(i)}(x)=R_{i}(a x)
$$

for $j=1, \ldots, n, x \in M$. This can be seen directly (without appealing to Theorem 2.7) as follows: for $x \in M \backslash\{0\}$ let $T_{x} M \subset W$ denote the tangent space to M at x :

$$
T_{x} M=\{\dot{c}(0) \mid c: \mathbb{R} \rightarrow M, c(0)=x\}
$$

Then

$$
M \cap T_{x} M=\bigcup_{i} R_{i}(x)
$$

and for $a \in \mathrm{GL}(W, M)$,

$$
a\left(T_{x} M\right)=T_{a x} M
$$

3. THE SETWISE STABILIZER GL (V, Y)

For any subset $Y \subset V$ we denote by $\mathrm{GL}(V, Y)$ the setwise stabilizer of Y in GL(V):

$$
\mathrm{GL}(V, Y)=\{u \in \mathrm{GL}(V): u(Y)=Y\}
$$

Subgroups of GL(V) of form GL(V,Y) are called saturated (see [4], [7]). One easily checks that a subgroup $G \subset \mathrm{GL}(V)$ is saturated iff it is defined by its orbits, i.e., iff $a \in G$ whenever $a \in G L(V)$ and $a x \in G x$ for all $x \in V$. We denote by $\operatorname{gl}(V, Y)$ the Lie algebra of $\mathrm{GL}(V, Y)$:

$$
\operatorname{gl}(V, Y)=\{A \in \operatorname{gl}(V): \exp (t A)(Y)=Y \forall t \in \mathbb{R}\}
$$

Call a subset Y of $V \backslash\{0\}$ homogeneous iff it is invariant under multiplication by nonzero scalars:

$$
y \in Y, \quad \lambda \in \mathbb{F} \backslash\{0\} \quad \Rightarrow \quad \lambda y \in Y
$$

circled iff it is invariant under multiplication by scalars of absolute value one:

$$
y \in Y, \quad \lambda \in \mathbb{F}, \quad|\lambda|=1 \quad \Rightarrow \quad \lambda y \in Y
$$

antiradial iff it intersects each ray in at most one point:

$$
y \in Y, \quad t>0, \quad t y \in Y \Rightarrow t=1
$$

Call two subsets Y_{1} and Y_{2} of $V \backslash\{0\}$ linearly disioint iff

$$
\operatorname{span}\left(Y_{1}\right) \cap \operatorname{span}\left(Y_{2}\right)=\{0\}
$$

and call a subset Y of $V \backslash\{0\}$ linearly prime iff it is not the union of two nonempty linearly disjoint subsets. Clearly every subset Y of $V \backslash\{0\}$ has a unique decomposition:

$$
Y=Y_{1} \cup \cdots \cup Y_{k}
$$

where Y_{1}, \ldots, Y_{k} are nonempty and linearly prime, and Y_{i} and $Y \backslash Y_{i}$ are
linearly disjoint. When $V=\operatorname{span}(Y)$ we have the obvious inclusion of groups:

$$
\mathrm{GL}\left(V_{1}, Y_{1}\right) \times \cdots \times \mathrm{GL}\left(V_{k}, Y_{k}\right) \subset \mathrm{GL}(V, Y)
$$

and isomorphism of Lie algebras:

$$
\operatorname{gl}\left(V_{1}, Y_{1}\right) \times \cdots \times \operatorname{gl}\left(V_{k}, Y_{k}\right)=\operatorname{gl}(V, Y)
$$

where $V_{i}=\operatorname{span}\left(Y_{j}\right)$ for $j=1, \ldots, k$, so that

$$
V=V_{1} \oplus \cdots \oplus V_{k} .
$$

Now fix $Z_{i} \subset W_{j} \backslash\{0\}(j=1, \ldots, n)$ and assume

$$
W_{i}=\operatorname{span}\left(Z_{i}\right)
$$

Let $Z \subset W$ denote the image of $Z_{1} \times \cdots \times Z_{n}$ under the canonical map $\mu \in L^{n}\left(W_{1}, \ldots, W_{n} ; W\right):$

$$
\mathrm{Z}=\left\{z_{1} \otimes \cdots \otimes z_{n}: z_{i} \in Z_{i}\right\}
$$

For $i, j=1, \ldots, n$ set

$$
G_{i j}=\left\{a \in L_{\text {is } 0}\left(W_{i}, W_{i}\right): a\left(Z_{i}\right)=\mathrm{Z}_{i}\right\}
$$

so that

$$
\begin{aligned}
G_{i j} & =\mathrm{GL}\left(W_{i}, Z_{i}\right) \\
\mathcal{G}_{i} & =\operatorname{gl}\left(W_{i}, Z_{i}\right)
\end{aligned}
$$

The system $\left\{G_{i j}\right\}$ satisfies the axioms (2.1)-(2.3), so we may form the group G and Lie algebra \mathcal{G}. We have (by the guiding principle) the obvious inclusions:

$$
\begin{aligned}
& G \subset \mathrm{GL}(W, Z) \\
& \mathcal{G} \subset \mathrm{gl}(W, Z)
\end{aligned}
$$

we wish to investigate the extent to which these inclusions are equalities. (Note that Theorem 2.7 asserts equality in case $Z_{i}=W_{j} \backslash\{0\}$.)

Theorem 3.1. Suppose each Z_{i} is linearly prime. Then Z is linearly prime and

$$
\operatorname{gl}(W, Z) \subset \operatorname{gl}(W, M)
$$

Tineorem 3.2. Suppose each Z_{i} is linearly prime and homogeneous. Then Z is linearly prime and homogeneous, and

$$
\mathcal{G}=\operatorname{gl}(W, Z)
$$

Theorem 3.3. Suppose each Z_{i} is linearly prime, circled, and antiradial. Then Z is linearly prime, circled, and antiradial, and

$$
\mathcal{G}=\operatorname{gl}(W, Z)
$$

4. EXAMPLES

Before proving these theorems, we give some examples to show that they cannot be strengthened.

Example 4.1. Let $W_{1}=V_{1} \otimes U, W_{2}=V_{2} \otimes U$, where $\operatorname{dim}\left(V_{1}\right)>1$ and dim $(U)>1$. Choose $Y_{i} \subset V_{i}\{0\}, X \subset U \backslash\{0\}$ which span the corresponding spaces and are linearly prime, and let $Z_{i}=\left\{y_{j} \otimes x: y_{i} \in Y_{i}, x \in X\right\}$. Then

$$
\mathrm{GL}(W, Z) \not \subset \mathrm{GL}(W, M)
$$

as the transformation

$$
y_{1} \otimes x \otimes y_{2} \otimes x^{\prime} \rightarrow y_{1} \otimes x^{\prime} \otimes y_{2} \otimes x
$$

lies in $\mathrm{GL}(W, Z)$ but not in $\mathrm{GL}(W, M)$. By Theorem 3.1 each Z_{i} is linearly prime; hence the conclusion of Theorem 3.1 cannot be strengthened to the analogous assertion about groups. One can arrange that the Z_{i} satisfy the hypotheses of Theorem 3.2 (or Theorem 3.3) by choosing Y_{i} and X to satisfy them; but

$$
G \subset \mathrm{GL}(W, M)
$$

by definition, so that we have examples where

$$
G \neq \mathrm{GL}(W, Z)
$$

showing that the conclusion of Theorem 3.2 (or Theorem 3.3) also need not hold on the level of groups.

Example 4.2. Take $n=2, \operatorname{dim}\left(W_{1}\right)=\operatorname{dim}\left(W_{2}\right)=2$, and let $\left\{e_{i 1}, e_{i 2}\right\}$ be a basis for $W_{j}(j=1,2)$. Let

$$
Z_{i}=\left(\mathbb{F} e_{i 1} \cup \mathbb{F} e_{i 2}\right) \backslash\{0\},
$$

so that Z_{j} is homogeneous but not linearly prime. Define $a \in \mathrm{GL}(W)$ by

$$
a\left(e_{1 r} \otimes e_{2 s}\right)=\lambda_{r s} e_{1 r} \otimes e_{2 s} .
$$

Then $a \in \mathrm{GL}(W, Z)$ but $a \notin \mathrm{GL}(W, M)$ if $\lambda_{11} \lambda_{22} \neq \lambda_{12} \lambda_{21}$ (compare Proposition 1.1). Note that a may be chosen arbitrarily near the identity, so that Theorem 3.1 does not hold without the hypothesis that the Z_{j} are linearly prime even when the Z_{i} are homogeneous.

Example 4.3. This is the same as Example 4.2, but take $\mathbb{F}=\mathbb{C}$ and

$$
Z_{j}=S^{1} e_{j 1} \cup S^{1} e_{i 2}
$$

where $S^{1}=\{\lambda \in \mathbb{C}:|\lambda|=1\}$, and choose $\lambda_{r s} \in S^{1}$. Again the conclusion of Theorem 3.1 fails although the Z_{i} are circled and antiradial.

Example 4.4. Take $n=2, \mathbb{F}=\mathbb{R}$:

$$
W_{i}=V_{i 1} \oplus V_{i 2},
$$

where $V_{i r}$ is a Hilbert space and $\operatorname{dim}\left(V_{i r}\right)>1$, and let

$$
\mathrm{Z}_{i}=Y_{i 1} \cup Y_{i 2},
$$

where $Y_{i r}$ is the unit sphere in $V_{i r}$. Consider a transformation $a \in \mathrm{GL}(W)$ of form

$$
a\left(y_{1 r} \otimes y_{2 s}\right)=\left(b_{1 r} y_{1 r}\right) \otimes\left(b_{2 s} y_{2 s}\right),
$$

where $y_{i r} \in V_{i r}$ and $b_{j r} \in G L\left(V_{i r}\right)$. If each $b_{i r}$ is orthogonal, we clearly have that $a \in \mathrm{GL}(W, Z)$, but we will not have $a \in \mathrm{GL}(W, M)$ in general, even when a
is very close to the identity. Again the conclusion of Theorem 3.1 fails although $\mathbb{F}=\mathbb{R}$ and each Z_{j} is antiradial.

Example 4.5. Take $n=2, \operatorname{dim}\left(W_{i}\right)>1$, and suppose W_{1} is a Hilbert space. Let $Z_{1}=$ unit sphere of W_{1} and $Z_{2}=W_{2} \backslash\{0\}$. Then $Z=M$. This example shows that $g l(W, Z)$ can be much larger than \mathcal{G} even when the Z_{i} are linearly prime. In other words, the common conclusion of Theorems 3.2 and 3.3 does not follow from the hypothesis of Theorem 3.1.

5. PROOFS OF THEOREMS 3.1, 3.2, 3.3

First note that Theorem 3.1 follows from Theorem 3.2. Indeed, if we set $\tilde{Z}_{j}=(\mathbb{F} \backslash\{0\}) \cdot Z_{i}$, then \tilde{Z}_{j} is homogeneous and $\mathrm{GL}(W, Z) \subset G L(W, \tilde{Z})$. Next note that in Theorems 3.2 and 3.3 it suffices to consider the case $n=2$ by induction. Hence without loss of generality we assume $n=2$; to simplify the notation we write

$$
\begin{array}{ll}
U=W_{1}, & V=W_{2} \\
X=Z_{1}, & Y=Z_{2}
\end{array}
$$

so that

$$
\begin{aligned}
W & =U \otimes V \\
Z & =\{x \otimes y: x \in X, y \in Y\} .
\end{aligned}
$$

We first show that Z is linearly prime. To this end suppose

$$
Z=Z^{1} \cup Z^{2}
$$

where Z^{1} and Z^{2} are linearly disjoint and nonempty; we shall derive a contradiction. For $y \in Y$ and $r=1,2$ let

$$
X^{r}(y):=\left\{x \in X: x \otimes y \in Z^{r}\right\}
$$

Then $X^{1}(y)$ and $X^{2}(y)$ are linearly disjoint (or empty) and

$$
X=X^{1}(y) \cup X^{2}(y)
$$

so either $X^{1}(y)=X$ or $X^{2}(y)=X$. Hence let

$$
Y^{\tau}:=\left\{y \in Y: X^{r}(y)=X\right\} .
$$

Then $Y=Y^{1} \cup Y^{2}$. It is enough to show that Y^{1} and Y^{2} are linearly disjoint, for then one of them, say Y^{1}, must be empty, whence Z^{1} is empty, the desired contradiction. But if $v \in \operatorname{span}\left(Y^{l}\right) \cap \operatorname{span}\left(Y^{2}\right)$, then for $x \in X$ we have $x \otimes v \in \operatorname{span}\left(x \otimes Y^{1}\right) \cap \operatorname{span}\left(x \otimes Y^{2}\right)$. Since $x \otimes Y^{r} \subset Z^{r}$ and $\operatorname{span}\left(Z^{1}\right) \cap$ $\operatorname{span}\left(Z^{2}\right)=\{0\}$, it follows that $v=0$ as required.

We now continue with the proof of Theorem 3.1. Choose $C \in \operatorname{gl}(W, Z)$, and set

$$
c=\exp (t C)
$$

with $t \in \mathbb{R}$. We must show that $c(M)=M$. First we show the following:

Claim. For each $y \in Y$ there exists $y^{\prime} \in Y$ with

$$
c(U \otimes \boldsymbol{y})=U \otimes y^{\prime}
$$

Fix y and choose a basis e_{1}, \ldots, e_{m} of U with $e_{r} \in X(r=1, \ldots, m)$. As $c(Z)=Z$, we may write

$$
c\left(e_{r} \otimes y\right)=e_{r}^{\prime} \otimes y_{r}^{\prime}
$$

for $r=1, \ldots, m$. Assume temporarily that c is close to the identity; then $e_{1}^{\prime}, \ldots, e_{m}^{\prime}$ form a basis, and (rescaling if necessary) we may take y_{r}^{\prime} close to y. (We do not require $y_{\tau}^{\prime} \in Y$.)

Partition the set $\{1, \ldots, m\}$ into equivalence classes according to the equivalence relation $\mathbb{F} \boldsymbol{y}_{r}^{\prime}=\mathbb{F} \boldsymbol{y}_{s}^{\prime}$. Thus for each equivalence class R we may set y_{R}^{\prime} equal to one of the y_{r}^{\prime} with $r \in R$ and obtain

$$
c\left(e_{r} \otimes y\right) \in U \otimes y_{R}^{\prime}
$$

for $r \in R$. Rescaling the e_{r}^{\prime} if necessary, we may as well assume

$$
\begin{equation*}
c\left(e_{r} \otimes \boldsymbol{y}\right)=e_{r}^{\prime} \otimes \boldsymbol{y}_{R}^{\prime} \tag{5.1}
\end{equation*}
$$

for $r \in R$.
The claim asserts that there is only one equivalence class R. Since X is linearly prime, we may prove this by showing that

$$
X \subset \bigcup_{R} \operatorname{span}\left\{e_{r}: r \in R\right\}
$$

Hence choose $x \in X$. Using the basis e_{1}, \ldots, e_{m}, write x in the form

$$
x=\sum x_{R},
$$

where

$$
x_{R} \in \operatorname{span}\left\{e_{r}: r \in R\right\} .
$$

As $x \otimes y \in Z=c(Z)$, we have

$$
c(x \otimes y)=x^{\prime} \otimes y^{\prime}
$$

for some $y^{\prime} \in Y$. But by linearity and (5.1),

$$
c(x \otimes y)=\sum c\left(x_{R} \otimes y\right)=\sum x_{R}^{\prime} \otimes y_{R}^{\prime}
$$

where

$$
x_{R}^{\prime} \in \operatorname{span}\left\{e_{r}^{\prime}: r \in R\right\}
$$

(Note that $x_{R}^{\prime}=0 \Leftrightarrow x_{R}=0$.) Hence

$$
\begin{equation*}
\sum x_{R}^{\prime} \otimes y_{R}^{\prime}=x^{\prime} \otimes y^{\prime} \tag{5.2}
\end{equation*}
$$

For each nonzero x_{R} we can find (since $e_{1}^{\prime}, \ldots, e_{m}^{\prime}$ form a basis) a functional ξ with $\left\langle\xi, x_{R}^{\prime}\right\rangle=1$ and $\left\langle\xi, x_{S}^{\prime}\right\rangle=0$ for $S \neq R$. Applying ξ to (5.2) yields

$$
y_{R}^{\prime}=\left\langle\xi, x^{\prime}\right\rangle y^{\prime}
$$

Hence by the definition of the equivalence relation, at most one x_{R} is nonzero; i.e., $x=x_{R}$, as was to be shown.

Now we must remove the assumption that c is close to the identity. We have shown that for each y there is an $\varepsilon>0$ such that the claim holds for $c=\exp (t C)$ with $|t|<\varepsilon$. By compactness (in projective space) ε may be chosen independent of y. Hence by iterating c the claim holds for all t as required.

By exactly the same argument we also have the following:
Claim. For each $x \in X$ there exists $x^{\prime} \in X$ with

$$
c(x \otimes V)=x^{\prime} \otimes V
$$

Now choose a basis $e_{1}, \ldots, e_{m} \in X$ of U and a basis $f_{1}, \ldots, f_{n} \in Y$ of V. By the claims, choose $e_{1}^{\prime}, \ldots, e_{m}^{\prime} \in X, f_{1}^{\prime}, \ldots, f_{n}^{\prime} \in Y$ such that

$$
\begin{aligned}
& c\left(e_{r} \otimes V\right)=e_{r}^{\prime} \otimes V \\
& c\left(U \otimes f_{s}\right)=U \otimes f_{s}^{\prime}
\end{aligned}
$$

for $r=1, \ldots, m, s=1, \ldots, n$. Then

$$
\begin{aligned}
c\left(e_{r} \otimes f_{s}\right) & \in c\left(e_{r} \otimes V \cap U \otimes f_{s}\right) \\
& =e_{r}^{\prime} \otimes V \cap U \otimes f_{s}^{\prime} \\
& =\mathbb{F} \cdot e_{r}^{\prime} \otimes f_{s}^{\prime}
\end{aligned}
$$

so there exist scalars $c_{r s} \in \mathbb{F} \backslash\{0\}$ with

$$
c\left(e_{r} \otimes f_{s}\right)=c_{r s} e_{r}^{\prime} \otimes f_{s}^{\prime}
$$

We must find scalars a_{r}, b_{s} with

$$
c_{r s}=a_{r} b_{s}
$$

for then $c-a \otimes b$, where

$$
\begin{aligned}
& a e_{\tau}=a_{r} e_{r}^{\prime} \\
& b f_{s}=b_{s} f_{s}^{\prime}
\end{aligned}
$$

Notice that Examples 4.2-4.4 satisfy the conclusions of the claims, so we must again use the assumption that X and Y are linearly prime. Such scalars a_{r} and b_{s} exist iff for all indices $r, r^{\prime}, s, s^{\prime}$ we have

$$
\begin{equation*}
c_{r s} c_{r^{\prime} s^{\prime}}=c_{r s^{\prime}} c_{r^{\prime} s} \tag{*}
\end{equation*}
$$

(Indeed, the existence of the scalars is equivalent to the condition that $c_{r s}$ is a rank one matrix, which is equivalent to the condition that each two by two minor vanishes.)

Suppose

$$
\begin{aligned}
& x=\sum \alpha_{i} e_{i} \in X \\
& y=\sum \beta_{i} e_{i} \in Y
\end{aligned}
$$

Then

$$
c(x \otimes y)=\sum c_{i j} \alpha_{i} \beta_{j} e_{i}^{\prime} \otimes f_{i}^{\prime}=x^{\prime} \otimes y^{\prime}
$$

so by Proposition 1.2,

$$
c_{r s} \alpha_{r} \beta_{s} c_{r^{\prime} s^{\prime}} \alpha_{r^{\prime}} \beta_{s^{\prime}}=c_{r s^{\prime}} \alpha_{\tau} \beta_{s^{\prime}} c_{r^{\prime} s} \alpha_{r^{\prime}} \beta_{s}
$$

so ($*$) holds when $\alpha_{r}, \alpha_{r^{\prime}}, \beta_{s}, \beta_{s^{\prime}} \neq 0$. Now for any proper subset of indices $I \subset\{1, \ldots, m\}$ we have

$$
X \not \subset \operatorname{span}\left\{e_{i}: i \in I\right\} \cup \operatorname{span}\left\{e_{i}: i \notin I\right\}
$$

so we can find x with $\alpha_{r} \neq 0$ for some $r \in I$ and $\alpha_{r^{\prime}} \neq 0$ for some $r^{\prime} \notin I$. Let $I_{1}=\{1\}$, and (if I_{i} is defined for $i<n$) read I_{i} for I in the last sentence and set $I_{i+1}=I_{i} \cup\left\{r^{\prime}\right\}$. Rename the indices so $I_{i}=\{1, \ldots, i\}$. Then for each $r^{\prime}=1, \ldots, m$ there exist $r<r^{\prime}$ and $x \in X$ such that $\alpha_{r}, \alpha_{r^{\prime}} \neq 0$; similarly for Y. Hence for cach $r^{\prime}=1, \ldots, m$ and each $s^{\prime}-1, \ldots, n$ there exist $r<r^{\prime}$ and $s<s^{\prime}$ such that (*) holds. If (for fixed $\left.r, r^{\prime}\right)(*)$ holds for $\left(s, s^{\prime}\right)=\left(i, i^{\prime}\right)$ and also for $\left(s, s^{\prime}\right)=\left(j^{\prime}, i^{\prime \prime}\right)$, then it holds for $\left(s, s^{\prime}\right)=\left(j, j^{\prime \prime}\right)$ as $c_{r s} \neq 0$. Similarly, if for $\left(r, r^{\prime}\right)=\left(i, i^{\prime}\right)$ and $\left(r, r^{\prime}\right)=\left(i^{\prime}, i^{\prime \prime}\right)(*)$ holds for all $\left(s, s^{\prime}\right)$, then it docs also for $\left(r, r^{\prime}\right)=\left(i, i^{\prime \prime}\right)$. Hence by induction (*) holds identically, as required.

This proves Theorem 3.1. Note that we have also given a proof of Theorem 2.7, since we found a and b with $c=a \otimes b$.

We now turn to Theorem 3.2. We have already shown that

$$
c=a \otimes b
$$

for some $a \in \mathrm{GL}(U)$ and $b \in \mathrm{GL}(V)$; we must show that $a \in \mathrm{GL}(U, X)$ and $b \in \mathrm{GL}(V, Y)$. Choose $x \in X$ and $y \in Y$ so that $x \otimes y \in Z$. As $c \in \mathrm{GL}(W, Z)$, we have

$$
(a x) \otimes(b y)=c(x \otimes y)=x^{\prime} \otimes y^{\prime}
$$

for some $x^{\prime} \in X$ and $y^{\prime} \in Y$. Hence for some $\lambda \in \mathbb{F}$ we have

$$
\begin{aligned}
& a x=\lambda x^{\prime} \\
& b y=\lambda^{-1} y^{\prime}
\end{aligned}
$$

But X and Y are homogeneous; hence $a x \in X$ and $b y \in Y$, as required.
The proof of Thcorcm 3.3 requires more care. We still have that $c=a \otimes b$, but a and b are not uniquely determined by this condition; they may be
replaced by αa and $\alpha^{-1} b$. If α is chosen incorrectly, we shall not be able to conclude that $\alpha a \in \mathrm{GL}(U, X)$.

By the axiom of choice choose $x^{\prime}=x^{\prime}(x, y) \in X$ and $y^{\prime}=y^{\prime}(x, y) \in Y$ such that

$$
(a x) \otimes(b y)=c(x \otimes y)=x^{\prime}(x, y) \otimes y^{\prime}(x, y)
$$

for $x \in X, y \in Y$. Conclude that there exists $\lambda=\lambda(x, y) \in \mathbb{F}$ such that

$$
\begin{align*}
& a x=\lambda(x, y) x^{\prime}(x, y) \\
& b y=\lambda(x, y)^{-1} y^{\prime}(x, y) \tag{5.3}
\end{align*}
$$

Since X and Y are assumed to be circled, it is enough to prove that $|\lambda(x, y)|=1$.

Fix $x_{0} \in X$ and $y_{0} \in Y$. Replacing a by $\lambda\left(x_{0}, y_{0}\right)^{-1} a$ and b by $\lambda\left(x_{0}, y_{0}\right) b$, we may assume w.l.o.g. that $a x_{0}=x^{\prime}\left(x_{0}, y_{0}\right)$ and $b y_{0}=y^{\prime}\left(x_{0}, y_{0}\right)$, so that

$$
\lambda\left(x_{0}, y_{0}\right)=1 .
$$

Read y_{0} for y in (5.3):

$$
a x=\lambda\left(x, y_{0}\right) x^{\prime}\left(x, y_{0}\right)
$$

whence

$$
\lambda(x, y) x^{\prime}(x, y)=\lambda\left(x, y_{0}\right) x^{\prime}\left(x, y_{0}\right)
$$

As $x^{\prime}(x, y) \in X, x^{\prime}\left(x, y_{0}\right) \in X$, and X is antiradial, it follows that

$$
|\lambda(x, y)|=\left|\lambda\left(x, y_{0}\right)\right|
$$

Similarly

$$
|\lambda(x, y)|=\left|\lambda\left(x_{0}, y\right)\right| .
$$

Hence

$$
\begin{aligned}
|\lambda(x, y)| & =\left|\lambda\left(x_{0}, y\right)\right| \\
& =\left|\lambda\left(x_{0}, y_{0}\right)\right| \\
& =1
\end{aligned}
$$

as required.

6. MORE NOTATION

Now assume $U, V, W_{1}, \ldots, W_{n}$ are normed. Define

$$
\begin{aligned}
& B(V)=\{y \in V:\|y\|<1\} \\
& \bar{B}(V)=\{y \in V:\|y\| \leqslant 1\} \\
& S(V)=\{y \in V:\|y\|=1\} \\
& E(V)=\text { extreme points of } \bar{B}(V), \\
& \bar{E}(V)=\text { closure of } E(V),
\end{aligned}
$$

so that by the Krein-Milman theorem (see e.g. [1]),

$$
\vec{B}(V)=\text { convex hull of } \bar{E}(V)
$$

We shall say that $S(V)$ is smooth at $x \in S(V)$ iff there is a unique support functional $\xi \in V^{*}$ to $\bar{B}(V)$ at x; i.e. for all $\eta \in V^{*}$ we have

$$
\langle\eta, x\rangle=\|\eta\|=\|x\|=1 \quad \Leftrightarrow \quad \eta=\xi
$$

We call $S(V)$ smooth iff it is smooth at each of its points. The reason for this terminology is the fact that $S(V)$ is smooth at x iff for all $v \in V$ the convex function $t \rightarrow\|x+t v\|$ is differentiable at $t=0$. (The proof of this fact is essentially the same as the proof of the Hahn-Banach theorem; see e.g. [1, pp. 445-453].)

We always give the space $L^{n}\left(W_{1}, \ldots, W_{n} ; V\right)$ the operator norm:

$$
\|A\|=\sup \left\{\left\|A\left(x_{1}, \ldots, x_{n}\right)\right\|: x_{i} \in S\left(W_{i}\right)\right\}
$$

In the special case of the dual space U^{*} this norm is called the dual norm.
Denote by $I(U, V)$ the set of isometries from U onto V :

$$
I(U, V)=\left\{b \in L_{\text {iso }}(U, V):\|b\|=\left\|b^{-1}\right\|=1\right\}
$$

by $I(V)$ the isometry group of V :

$$
I(V)=I(V, V)
$$

and by $i(V)$ its Lie algebra:

$$
i(V)=\{A \in \operatorname{gl}(V): \exp (t A) \in I(V) \forall t \in \mathbb{R}\}
$$

Note the obvious formulas

$$
\begin{align*}
& I(V)=\mathrm{GL}(V, Y) \tag{6.1}\\
& i(V)=\mathrm{gl}(V, Y) \tag{6.2}
\end{align*}
$$

for $Y=B(V), \bar{B}(V), S(V), E(V), \bar{E}(V)$.

7. THE CANONICAL NORM ON W

The canonical norm on the tensor product $W=W_{1} \otimes \cdots \otimes W_{n}$ is characterized by each of the following three conditions:

$$
\begin{equation*}
\bar{B}(W)=\text { convex hull of } M_{0} \tag{7.1}
\end{equation*}
$$

where M_{0} is the image of $S\left(W_{1}\right) \times \cdots \times S\left(W_{n}\right)$ by μ :

$$
M_{0}=\left\{x_{1} \otimes \cdots \otimes x_{n}: x_{i} \in S\left(W_{i}\right)\right\} ;
$$

(7.2) for every normed space V the canonical linear isomorphism

$$
\mu^{*}: L(W, V) \rightarrow L^{k}\left(W_{1}, \ldots, W_{n} ; V\right)
$$

[see (1.1)] is an isometry;
(7.3) the canonical isomorphism

$$
W \simeq L^{k}\left(W_{1}, \ldots, W_{n} ; \mathbb{F}\right)^{*}
$$

is an isometry.
The equivalence of these three definitions is due to Grothendieck [3, p. 28]. Condition (7.2) explains the name "canonical": the tensor product W is often defined axiomatically by the requirement that the map μ^{*} be a linear isomorphism (see Section 1). For the convenience of the reader we sketch the proof of the equivalence of (7.1), (7.2), (7.3).

First define the canonical norm $\|\cdot\|$ to be the Minkowski functional of the right side of (7.1); then (7.1) is true by construction. One easily derives the formula

$$
\|w\|=\inf \left\{\sum_{r}\left\|x_{1 r}\right\| \cdots\left\|x_{n r}\right\|\right\}
$$

where the infimum is over all representations

$$
w=\sum_{r} x_{1 r} \otimes \cdots \otimes x_{n r}
$$

of w as a sum of elements of M. For $A \in L(W, V)$ we have

$$
\begin{aligned}
\|A w\| & =\left\|\sum_{r}\left(\mu^{*} A\right)\left(x_{1 r}, \ldots, x_{n r}\right)\right\| \\
& \leqslant\left\|\mu^{*} A\right\| \sum_{r}\left\|x_{1 r}\right\| \cdots\left\|x_{n r}\right\|
\end{aligned}
$$

so that taking the infimum gives $\|A w\| \leqslant\left\|\mu^{*} A\right\|\|w\|$. Hence $\|A\| \leqslant\left\|\mu^{*} A\right\|$. On the other hand, if $\left\|x_{1}\right\|=\cdots\left\|x_{n}\right\|=1$, then $x_{1} \otimes \cdots \otimes x_{n} \in S(W)$, so that $\left\|x_{1} \otimes \cdots \otimes x_{n}\right\|=1$. Hence $\left\|\mu^{*}\right\|=1$, so $\left\|\mu^{*} A\right\|=\|A\|$, proving (7.2). Assertion (7.3) is obtained by taking $V=\mathbb{F}$ in (7.2) and dualizing.

Warning. The canonical linear isomorphism

$$
W \simeq L^{n}\left(W_{1}^{*}, \ldots, W_{n}^{*} ; \mathbb{F}\right)
$$

is not isometric. If the W_{i} are Hilbert spaces, this would imply that W and W^{*} are isometrically isomorphic, which is not the case.

Theorem 7.4. The set $E(W)$ of extreme points of $\bar{B}(W)$ is the image by μ of $E\left(W_{1}\right) \times \cdots \times E\left(W_{n}\right)$:

$$
E(W)=\left\{x_{1} \otimes \cdots \otimes x_{n}: x_{i} \in E\left(W_{j}\right)\right\}
$$

Proof. The map μ restricts to a local homeomorphism:

$$
\mu: S\left(W_{1}\right) \times \cdots \times S\left(W_{n}\right) \rightarrow M_{0} \subset S(W)
$$

IHence if some $x_{j} \in S\left(W_{j}\right) \backslash E\left(W_{j}\right)$ (so that there is a line segment $L_{i} \subset S\left(W_{j}\right)$ with x_{i} in its interior), the point $x=x_{1} \otimes \cdots \otimes x_{n} \in S(W) \backslash E(W)$ (as it lies in the interior of the line segment $L=x_{1} \otimes \cdots \otimes x_{i-1} \otimes L_{i} \otimes x_{i+1} \otimes \cdots \otimes x_{n}$).

Conversely suppose $x_{i} \in E\left(W_{i}\right)(j=1, \ldots, n)$ but

$$
\begin{equation*}
x=x_{1} \otimes \cdots \otimes x_{n}=\frac{1}{2}(u+v) \tag{7.5}
\end{equation*}
$$

where $u, v \in \bar{B}(W)$. We must show that $x=u=v$. By the Krein-Milman theorem and the definition of $\bar{B}(W), u$ and v are convex combinations of elements of M_{0}. Thus let

$$
\begin{aligned}
& u=\sum_{r} \alpha_{r} u_{1 r} \otimes \cdots \otimes u_{n r} \\
& v=\sum_{s} \beta_{s} v_{1 s} \otimes \cdots \otimes v_{n s}
\end{aligned}
$$

where $u_{i r}, v_{i s} \in \bar{E}\left(W_{j}\right), \alpha_{r}, \beta_{s}>0$, and $\Sigma \alpha_{r}=\Sigma \beta_{s}=1$.
Let ξ_{j} support $\bar{B}\left(W_{j}\right)$ at \boldsymbol{x}_{i}; i.e.

$$
\left\|\xi_{i}\right\|=\left\langle\xi_{i}, x_{i}\right\rangle=\left\|x_{i}\right\|=1
$$

Let $\xi=\xi_{1} \otimes \cdots \otimes \xi_{n}$. Then

$$
1=\langle\xi, x\rangle=\frac{1}{2}\langle\xi, u\rangle+\frac{1}{2}\langle\xi, v\rangle,
$$

so

$$
\langle\xi, u\rangle=\langle\xi, v\rangle=1,
$$

so

$$
\mathrm{I}=\langle\xi, u\rangle=\sum_{r} \alpha_{r} \prod_{i}\left\langle\xi_{i}, u_{i r}\right\rangle
$$

and

$$
1=\langle\xi, v\rangle=\sum_{s} \beta_{s} \prod_{i}\left\langle\xi_{i}, v_{i s}\right\rangle
$$

so for all τ, s,

$$
\mathrm{l}=\prod_{j}\left\langle\xi_{i}, u_{i r}\right\rangle=\prod_{i}\left\langle\xi_{i}, v_{i s}\right\rangle
$$

so (rescaling if necessary)

$$
1=\left\langle\xi_{i}, u_{i r}\right\rangle=\left\langle\xi_{i}, v_{i s}\right\rangle
$$

for all r, s and $j=1, \ldots, n$. Now apply $\xi_{1} \otimes \cdots \otimes \xi_{i-1} \otimes \xi_{i+1} \otimes \cdots \otimes \xi_{n}$ to (7.5) to obtain

$$
x_{i}=\frac{1}{2} \sum_{r} \alpha_{r} u_{i r}+\frac{1}{2} \sum_{s} \beta_{s} v_{i s}
$$

which (as x_{i} is extreme) is only possible if $x_{i}=u_{i r}=v_{i s}$. Hence $x=u=v$, as required.

8. ISOMETRIES OF W

Define $G_{i j} \subset L_{\text {iso }}\left(W_{i}, W_{j}\right)$ by

$$
G_{i j}=I\left(W_{i}, W_{i}\right)
$$

The system $G_{i j}$ satisfies the axioms (2.1)-(2.3), so we may form the wreath tensor product $G \subset G L(W)$. Endow W with the canonical norm. By Guiding Principle 2.5 we have

$$
\begin{equation*}
G \subset I(W) \tag{8.1}
\end{equation*}
$$

We also assert

$$
\begin{equation*}
I(W) \cap G L(W, M) \subset G \tag{8.2}
\end{equation*}
$$

Indeed, (8.2) holds more generally for any cross norm on W (see [2]), i.e. any norm which satisfies the equivalent conditions

$$
\|x\|=\left\|x_{1}\right\| \cdots\left\|x_{n}\right\|
$$

for $x=x_{1} \otimes \cdots \otimes x_{n}$, and

$$
M_{0} \subset S(W)
$$

This is because of the fact that for fixed $x_{1} \in S\left(W_{1}\right), \ldots, x_{i-1} \in S\left(W_{f-1}\right)$,
$x_{i+1} \in S\left(W_{i+1}\right), \ldots, x_{n} \in S\left(W_{n}\right)$, the map

$$
W_{i} \rightarrow W: x_{i} \rightarrow x_{1} \otimes \cdots \otimes x_{n}
$$

is an isometric embedding, and an element of $\mathrm{GL}(W, M)$ permutes the images (as the x_{i} and j vary) of these embeddings. Thus for $a \in I(W) \cap$ $\operatorname{GL}(W, M)$ of form (2.4) we must have $a_{i} \in I\left(W_{\sigma(i)}, W_{i}\right)=G_{\sigma(i) i}$, whence $a \in G$ as required.

Combining (8.1) and (8.2) gives

$$
\begin{equation*}
I(W) \cap G L(W, M)=G \tag{8.3}
\end{equation*}
$$

We would like to know when $I(W)=G$, i.e., when

$$
\begin{equation*}
I(W) \subset G L(W, M) \tag{8.4}
\end{equation*}
$$

Examples 4.3 and 4.4 show that we can't even conclude

$$
\begin{equation*}
i(W) \subset \operatorname{gl}(W, M) \tag{8.5}
\end{equation*}
$$

without an additional hypothesis. Example 4.1 shows that (8.4) can fail even when (8.5) holds.

Theorem 8.6. If each set $E\left(W_{j}\right)$ is linearly prime, then

$$
i(W)=\mathfrak{G}
$$

Theorem 8.7. If each $S\left(W_{i}^{*}\right)$ is smooth, then

$$
I(W)=G
$$

(By duality, the conclusion also follows if each $S\left(W_{i}\right)$ is smooth.)
To prove Theorem 8.6, take $Z_{j}=E\left(W_{i}\right)$ in Theorem 3.3, use Theorem 7.4 to conclude that $Z=E(W)$, and then apply (6.2). Before proving Theorem 8.7 we need some preliminary work.

According to (7.3), an element of $\xi \in W^{*}$ can be identified with a multilinear map $A: W_{1} \times \cdots \times W_{n} \rightarrow \mathbb{F}$. As $\left(x_{1}, \ldots, x_{n}\right)$ ranges over $S\left(W_{1}\right)$ $\times \cdots \times S\left(W_{n}\right)$, the number

$$
|\langle\xi, x\rangle|=\left|A\left(x_{1}, \ldots, x_{n}\right)\right|
$$

(where $x=x_{1} \otimes \cdots \otimes x_{n}$) assumes its maximum (viz. $\|\xi\|=\|A\|$) at some nonempty set of n-tuples. One immediately concludes that $|\langle\xi, w\rangle|(w \in W)$ assumes its maximum at any convex combination of elements $x \in M_{0}$ where $|\langle\xi, x\rangle|$ is maximal. Our next proposition asserts that such a convex combination is the most general such w.

Proposition 8.8. Let $\xi \in \mathrm{S}\left(W^{*}\right)$, and denote by F the set of all support functionals to $\bar{B}\left(W^{*}\right)$ at ξ :

$$
F=\{w \in S(W):\langle\xi, w\rangle=1\}
$$

Then

$$
F=\text { convex hull of } M_{0} \cap F
$$

Proof. Choose $w \in F$. By (7.1)

$$
w=\sum \beta_{r} x_{r}
$$

where $x_{r} \in M_{0}, \beta_{r}>0, \Sigma \beta_{r}=1$. As $w \in F$,

$$
\langle\xi, w\rangle=\|\xi\|=\|w\|=1
$$

Hence $\left\langle\xi, x_{r}\right\rangle=1=\left\|x_{r}\right\|$, so $x_{r} \in M_{0} \cap F$, as required. (The reverse inclusion is even more obvious.)

Lemma 8.9. Suppose $S\left(W^{*}\right)$ is smooth at $\eta \in S\left(W^{*}\right)$, and $y \in S(W)$ is the (unique) support functional at η. Then $y \in M_{0}$.

Proof. This follows immediately from Proposition 8.8.
Lemma 8.10. Suppose each $S\left(W_{i}^{*}\right)$ is smooth at $\xi_{i} \in S\left(W_{i}^{*}\right)$. Then $S\left(W^{*}\right)$ is smooth at $\xi=\xi_{1} \otimes \cdots \otimes \xi_{n}$.

Proof. Let $x_{i} \in S\left(W_{i}\right)$ be the unique support functional to ξ_{i}, and set $x=x_{1} \otimes \cdots \otimes x_{n}$. Then x supports $\bar{B}(W)$ and ξ; we must show it is unique.

To this end suppose that $x^{\prime} \in S(X)$ also supports $\bar{B}\left(W^{*}\right)$ at ξ; we must show $x=x^{\prime}$. By Proposition 8.8 we may assume without loss of generality that $x^{\prime} \in M_{0}$; then $x^{\prime}=x_{1}^{\prime} \otimes \cdots \otimes x_{n}^{\prime}$, where $x_{i}^{\prime} \in S\left(W_{i}\right)$. Then as

$$
1=\left\langle\xi, x^{\prime}\right\rangle=\prod\left\langle\xi_{i}, x_{i}^{\prime}\right\rangle
$$

and

$$
\left|\left\langle\xi_{i}, x_{i}^{\prime}\right\rangle\right| \leqslant 1,
$$

we have

$$
\left\langle\xi_{i}, x_{j}^{\prime}\right\rangle=\lambda_{i},
$$

where

$$
1=\left|\lambda_{i}\right|=\prod \lambda_{i}
$$

By smoothness at ξ_{i},

$$
\lambda_{i}^{-1} x_{i}^{\prime}=x_{i}
$$

so $x^{\prime}=x$, as required.
Proof of Theorem 8.7. By (8.3) we need only show that $I(W) \subset$ $\mathrm{GL}(W, M)$. Hence choose $a \in I(W)$; we shall prove $a\left(M_{0}\right)=M_{0}$. Hence choose $x=x_{1} \otimes \cdots \otimes x_{n} \in M_{0}$; we must show $a x \in M_{0}$. Let $\xi_{i} \in S\left(W_{i}^{*}\right)$ support $\bar{B}\left(W_{i}\right)$ at x_{i}. Then x supports $\bar{B}\left(W^{*}\right)$ at $\underline{\xi}=\xi_{1} \otimes \cdots \otimes \xi_{n}$, and by Lemma $8.10 x$ is the unique support functional to $\bar{B}\left(W^{*}\right)$ at ξ. Hence $y=a x$ is the unique support functional to $\bar{B}\left(W^{*}\right)$ at $\eta=a^{*-1} \xi$. Hence by Lemma 8.9, $y=a x \in M_{0}$, as required.

9. REMARKS AND CONJECTURES

Using the results of Section 3, it is possible to remove the assumption that each Z_{j} is linearly prime in Theorems 3.1-3.3. Indeed, if each Z_{j} is not linearly prime, decompose Z_{i} to the union of linearly prime sets

$$
\begin{equation*}
Z_{i}=\bigcup_{k=1}^{\nu_{j}} Z_{i k}, \operatorname{span} Z_{i k} \cap \operatorname{span}\left(\underset{\substack{ \\1 \leqslant l \leqslant v_{i} \\ l \neq k}}{ } Z_{i l}\right)=[0], \quad k=1, \ldots, v_{i} \tag{9.1}
\end{equation*}
$$

Then

$$
\begin{align*}
& W_{i}=\sum_{k=1}^{\nu_{i}} \oplus W_{i k}, \quad W_{i}=\operatorname{span} Z_{i}, \quad W_{i k}=\operatorname{span} Z_{i k} \tag{9.2}\\
& W=W_{1} \otimes \cdots \otimes W_{n}=\sum_{\substack{1 \leqslant j_{i} \leqslant \nu_{i} \\
i-1, \ldots, n}} \oplus W_{1 j_{1}} \otimes \cdots \otimes W_{n i_{n}}
\end{align*}
$$

Denote by $Z_{i_{1} \cdots j_{n}}$ and by $M_{i_{1} \cdots i_{n}}$ the images of $Z_{1 i_{1}} \times \cdots \times Z_{n i_{n}}$ and $W_{1 i_{1}} \times \cdots \times W_{n i_{n}}$ respectively under the canonical map $\mu \in$ $L\left(W_{1 i_{1}}, \ldots, W_{n j_{n}} ; W_{1 i_{1}}^{n} \otimes \cdots \otimes W_{n i_{n}}\right)$. According to Theorem 3.1 each $Z_{i_{1} \cdots j_{n}}$ is linearly prime. Then we have

Theorem 9.3. Let (9.1) the unique decomposition of the set Z_{i} to linearly prime factors. Then

$$
\begin{equation*}
\operatorname{gl}(W, Z) \subset \sum_{\substack{1 \leqslant i_{i} \leqslant \nu_{i} \\ i=1, \ldots, n}} \oplus g l\left(W_{1 i_{1}} \otimes \cdots \otimes W_{n i_{n}}, M_{i_{1} \cdots i_{n}}\right) \tag{9.4}
\end{equation*}
$$

If in addition each $\mathrm{Z}_{i k}, \mathrm{I} \leqslant j \leqslant n, \mathrm{l} \leqslant k \leqslant \nu_{j}$, is homogeneous (circled and antiradial), then equality holds in (9.4).

Let V be normed, and suppose that $E(V)=Y=\cup_{k=1}^{\nu} Y_{k}$ is the decomposition of Y to linearly prime factors. Put $V_{k}=\operatorname{span} Y_{k}$. Denote by $\left\|\|_{k}\right.$ the restriction of the norm $\left\|\|\right.$ on V to V_{k}. We claim that the norm on V has a simple representation by the norm $\left\|\|_{k}\right.$.

Lemma 9.5. Let the above assumption hold. Put

$$
v=\sum_{i=1}^{\nu} v_{i}, \quad v_{i} \in V_{i}, \quad i=1, \ldots, \nu
$$

Then

$$
\begin{equation*}
\|v\|=\sum_{i=1}^{\nu}\left\|v_{i}\right\|_{i} . \tag{9.6}
\end{equation*}
$$

Proof. Define a new norm on V :

$$
\|v\|=\sum_{i=1}^{\nu}\left\|v_{i}\right\|_{i}
$$

Our lemma will follow if the set of the extreme points $E^{\prime}(V)$ of the norm $\|\cdot\|$ coincides with the set Y. Suppose that $\| \mid v_{\| \|}=1$, and assume for simplicity that each $v_{i} \neq 0$. Then

$$
v=\sum_{i=1}^{\nu}\left\|v_{i}\right\|_{i} u_{i}, \quad u_{i}=\frac{v_{i}}{\left\|v_{i}\right\|}
$$

So v is a nontrivial convex combination of u_{1}, \ldots, u_{v}, where each u_{i} is in $S(V)$ and V_{i}. Thus

$$
E^{\prime}(V)=\bigcup_{i=1} E\left(V_{i}\right)
$$

Clearly $Y_{i} \subset E\left(V_{i}\right)$. It is left to show that $Y_{i} \supset E\left(V_{i}\right)$. The classical result claims that any $v \in B(V)$ is a finite convex combination of vectors from $E(V)$. So for any $v \in B(V)$

$$
v=\sum_{i=1}^{\nu} \sum_{y_{i j} \in Y_{i}} \alpha_{i j} y_{i j}, \quad \alpha_{i j}>0, \quad \sum_{i, j} \alpha_{i j}=1
$$

As

$$
V=V_{1} \oplus \cdots \oplus V_{\nu}, \quad V_{i}=\operatorname{span} Y_{i}
$$

the assumption that $v \in V_{i}$ implies

$$
v=\sum_{y_{i j} \in Y_{i}} \alpha_{i j} y_{i j}, \quad \alpha_{i j}>0, \quad \sum_{j} \alpha_{i j}=1
$$

Thus $Y_{i}=E\left(V_{i}\right)$ and $\|v\|=\|v\|$, as required.
Next we focus our attention on $\mathrm{GL}(W, Z)$, where W has the decomposition (9.2). Clearly a given $a \in \mathrm{GL}(W, Z)$ may shift between the isomorphic components $W_{1 j_{1}} \otimes \cdots \otimes W_{n i_{n}}$. Thus to analyze $\mathrm{GL}(W, Z)$ completely it suffices to study the case where each Z_{i} is linearly prime. Theorems 3.2-3.3 determined completely the structure of the Lie algebra of GL(W, Z). Example 4.1 gave us the cases in which $G L(W, Z)$ was bigger than G.

We conclude our paper with the following conjecture.

Conjecture 9.7. Let the assumptions of Theorem 3.2 (3.3) hold. Then (up to isomorphism) we can decompose each W_{i} as a tensor product $W_{i 1} \otimes W_{i 2}$ $\otimes \cdots \otimes W_{i \nu_{i}}$ such that each Z_{i} is the image of $Z_{i 1} \times \cdots \times Z_{i v_{i}}$ under the canonical map μ, where each $Z_{i k}$ is linearly prime and homogeneous (circled and antiradial). Moreover $G L(W, Z)$ coincides with G^{\prime} generated by the factors

$$
G_{(i, p)(i, q)}=\left\{a \in L_{i s o}\left(W_{i p}, W_{i q}\right), a\left(Z_{i p}\right)=Z_{i q}\right\} .
$$

REFERENCES

1 N. Dunford and J. T. Schwartz, Linear Operators Part I: General Theory, Interscience, 1957.
2 I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadioint Operators, Translations of Mathematical Monographs, Vol. 18, Amer. Math. Soc., Providence, 1969.
3 A. Grothendieck, Products Tensoriels Topologiques et Espaces Nucléaires, Mem. Amer. Math. Soc., Providence, 1966.
4 D. Luna, Remarques sur un article de J. W. Robbin, Bol. Soc. Brasil. Mat. 9:45-48 (1978).

5 M. Marcus and B. N. Moyls, Transformations on tensor product spaces, Pacific J. Math. 9:1215-1221 (1959).
6 H. Minc, Linear transformations on matrices: rank 1 preservers and determinant preservers, Linear and Multilinear Algebra 4:265-272 (1977).
7 J. W. Robbin, Lie algebras of infinitesimal norm isometries, Linear Algebra and Appl. 10:95-102 (1975).
8 B. L. Van der Waerden, Algebra, Vol. II, Springer, New York, 1960.
9 R. Westwick, Transformations on tensor spaces, Pacific J. Math. 23:613-620 (1967).

Received 3 July 1981; revised 15 October 1981

[^0]: *Research partially supported by Binational Science Foundation under grant 2242/80. LINEAR ALGEBRA AND ITS APPLICATIONS 44:97-123 (1982)

